

Lowell Regional Wastewater 451 First Street Boulevard Lowell, MA 01854 Attn: Tom Kawa

November 2, 2018

Dear Mr. Kawa,

Enclosed please find the toxicological evaluation and chemical analyses report for the effluent sample received on October 1st, 2018. This is your fourth quarter 2018 bioassay. Please call me at (401) 353-3420 if you have any questions.

Sincerely,

Michael McCallum Technical Laboratory Director

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill St., West Warwick, RI 02893 (401) 353-3420 TOXICOLOGICAL EVALUATION AND CHEMICAL ANALYSES OF EFFLUENT: NPDES Permit # MA0100633 Fourth Quarter 2018 Sample Lowell

> Prepared For: Lowell Regional Wastewater 451 First Street Boulevard Lowell, MA 01854

> > November 2, 2018

By
New England Testing Laboratory, Inc.
59 Greenhill Street
West Warwick, Rhode Island 02893

NETLAB CASE NUMBER: 8J01003

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

77 Batson Drive Manchester, CT 06042 T: 860.643.9560 F: 860.646.7169 www.nebio.com

NEW ENGLAND BIOASSAY A DIVISION OF GZA CHRONIC AQUATIC TOXICITY TEST REPORT

Permitee:	Lov	well RWWU		_NPDES #	MAC	0100633	
Report submitted to:	New England	l Testing Labo	2) ; 2)				
	59 Greenhill St	treet, West V	5) 2)				
Sample ID:		Effluent			≈ =		
Test Month/Year:		tober 2018			-		
NEB Proj#	05.	0044476.00			-		
Test Type / Method:					tatic-Ren	ewal	Freshwater
	Test Method 100)2.0; EPA 821	R-02-	013			
Effluent Sample Dates:	#19/30-10/1	<u>/18</u> #2	10/	2-3/1	8#3	·	10/4-5/18
Test Start	Date:	10/	2/18				
	R	esults Summ	ary				
Your results were as foll	ows:						
Passed all permit limits							
	Ac	ute Test Resi	ults				
Species	LC50	A-NOE		Pern	nit Limit		Pass / Fail
Ceriodaphnia dubia	>100%	100%		≥	100%		Pass
	Chr	onic Test Res	sults				
Species	C-NOEC	C-LOEC	IC	25	Permit L	imit	Pass/Fail
Ceriodaphnia dubia	100%	>100%	>10		N/A	-	N/A
Data Qualifiers affecting					,		,
	tillo coot.						

Certifications & Approvals: NH ELAP (2071), NJ DEP (CT405)

This report shall not be reproduced, except in its entirety, without approval of NEB. NEB is the sole authority for authorizing edits or modifications to the data contained in this report. NEB holds no responsibility for results and/or data that are not consistent with the original. Please contact the Lab Manager, Kimberly Wills, at 860-858-3153 or kimberly.wills@gza.com if you have questions concerning these results.

Test Report Certification

Permittee name:	Lowell RWWI	U F	Permit number:	MA0100633							
Client sample ID:	Effluent		Test Start Date:	10/2/18							
Whole Effluent Toxicity Test Report Certification (Permittee)											
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Executed on:											
	(Date)	Authorized Si	gnature								
		Print or Type	Name and Title								
		Print or Type	the Permittee's Na	ame							
			MA010063	33							
		Print or Type	the NPDES Permit	Number							
Whole Ff	fluent Toxicity Test Rei	nort Certification	n (Rinassay La	phoratory)							

The results reported relate only to the samples submitted as received

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Laboratory Manager

New England Bioassay a division of GZA

General Test Conditions

Permittee name:	me: Lowell RWWUPermit number:MA010063										
Client sample ID:	Effluent	Test Start Date:	10/2/18								
Sample Collection Information											
_	Sample Collection	n Intormati	on								
Effluent #1 Dates/Times: 9/30-10/1/18 @ 0700-0700 Receiving Water #1 Date/Time: 10/1/18 @ 0740 Effluent #2 Dates/Times: 10/2-3/18 @ 0700-0700 Receiving Water #2 Date/Time: 10/3/18 @ 0740 Effluent #3 Dates/Times: 10/4-5/18 @ 0700-0700 Receiving Water #3 Date/Time: 10/5/18 @ 0730 Were a minimum of three samples collected? Yes ☑ No ☐ *(see note below) Were samples used within the first 36 hours of collection? Yes ☑ No ☐ * (see note below) * sample collection note:											
	Test Con	ditions									
Permittee's Receiving Water: Merrimack River • Dilution water: Laboratory synthetic soft water (hardness 45 - 55 mg/L CaCO3) • Control water: Receiving water collected at a point immediately upstream of or away from the discharge Effluent concentrations tested: 0%, 6.25%, 12.5%, 25%, 50%, 100% Was effluent salinity adjusted? No Yes with Instant Ocean sea salts to ppt Dechlorination procedures: Chlorine is measured using 4500 CL-G DPD Colorimetric Method Dechlorination was not required TRC results and further information about aeration of samples can be found attached in "sample receipt chemistry"											
	Reference To	xicant Data									
Ceriodaphnia dubia											
	Date:	10/15/18	8								
	Toxicant: Sodium chloride										
	Dilution Water:	NEB CTRM	<u>1H</u>								
	Organism Source: Reproduction IC25:	0.95	g/L								
	Results within range		o 🗆								

Ceriodaphnia dubia Test Results

ceriouapiiila aubia Test Results											
Permittee nam	e:	Lowell RW	/WU	P	ermit number:	MA0100633					
Client sample II	ample ID: Effluent			Test Dates:	- 10/10/18						
Test Acceptability Criteria											
Lab Diluent Survi	ival:	90% Mean La	b Diluent Repr	oduction:	18.4you	ng per female					
River Control Sur	vival:	80% Mean Ri	ver Control Re _l	production:	30.0you	ng per female					
Thiosulfate Control Survival: N/A % Mean Thiosulfate Control Reproduction: N/A young per female											
		ndicates EPA criteria was	not met, see	explanation in	the "Results Disci	ussion" section at					
the bottom of th	e following		Test Results								
			Permit Limit	Test Result	Pass/Fail Status						
		48 hr LC50	≥ 100%	>100%	Pass						
	Acute	48 hr NOEC		100%							
	Data	TUa		Markey							
		Chronic LC50	EXTRE 0	>100%							
		Survival C-NOEC	N. F. HUN	100%							
		Survival C-LOEC	31 72 A	>100%							
		Reproduction C-NOEC		100%							
	Chuania	Reproduction C-LOEC		>100%	MADE LA						
	Chronic Data	Reproduction IC25	Para Mile	>100%							
	Duta	Reproduction IC50		>100%							
		Reportable C-NOEC		100%							
		Reportable C-LOEC		>100%							
		MATC	181/2 8 h	>100%							
		TUc		Y MESTERN							
Presence of an aste bottom of the follo		cates qualified data, see exp			sion" section at the						
			est Variability		200						
Reproduction PM	ISD:	47.0% Upper & Low	er EPA bounds	: 13 - 47% 📙	Low Within	bounds LHigh					
☐ PMSD excee	ds upper b	ounds. Test results are hi	ighly variable a	nd may not be	e sensitive enough	to determine					
the presence	of toxicity	at the permit limit conc	entration (PLC)	•							
The PMSD fa	lls within t	he upper (47%) and lowe	er (13%) bound	s. Results are	reportable.						
☐ PMSD falls b	elow the lo	ower bound test variabilit	ty criterion. The	e test is very s	ensitive. The relat	ive percent					
difference (R	(PD) betwe	en the control and each	treatment was	calculated an	d compared to the	e lower bound.					
		all concentrations fall bel ally insignificant.	ow the lower b	oound. Any dif	fferences observe	d in this test are					
		trations that were flagge									

significantly decreased from the control.

☐ No statistically significant reductions were observed in this test.

Ceriodaphnia dubia Test Results

Permittee name:	Lowell RWWU	Permit number: MA0100633									
Client sample ID:	Effluent	Test Dates: 10/2/18 - 10/10/18									
T											
Concentration - Response Evaluation											
Survival: #12 No significant effects at any test concentration with a flat concentration-response curve. Test concentrations performed very similarly to dilution control.											
Reproduction: #13 No significant effects at any test concentration with a relatively flat concentration-response curve. Test concentrations performed equal to or better than the dilution control.											
The concentration - respon	nse relationship was reviewed and th	ne following determination was made:									
Survival Reproducti	íon										
<u>x</u>	Results are reliable and report	able									
-	Results are anomalous (see	explanation below)									
	Results are inconclusive - retes	st (see explanation below)									
Results Discussion (if applicable):											

TEST METHODS

Ceriodaphnia dubia

Test type: Modified Chronic Static Renewal Freshwater Test

Test Reference Manual: EPA-821-R-02-013 "Short-Term Methods for Estimating the Chronic Toxicity of

Effluents and Receiving Water to Freshwater Organisms"

Test Method: Ceriodaphnia dubia Survival and Reproduction Test - EPA 1002.0

Temperature: 25 °C \pm 1°C (Temperatures should not deviate by more than 3°C during the test)

(required)

Light Quality: Ambient Laboratory Illumination (recommended)

Light Intensity: 10-20 μE/m2/s, or 50-100 ft-c (recommended)

Photoperiod: 16 hours light, 8 hours dark (recommended)

Test chamber size: 30 mL (recommended minimum)

Test solution volume: 15 mL (recommended minimum)

Renewal of Test Solutions: Daily (required)

Age of Test Organisms: Less than 24 hours; and all released within a 8-h period (required)

Number of Neonates

Per Test Chamber: 1 Assigned using blocking by known parentage (required)

Number of Replicate Test

Chambers Per Treatment: 10 (required minimum)

Number of Neonates Per

Test Concentration: 10 (required minimum)

Feeding Regime: Fed 0.1 mL each of YCT and algal suspension per exposure chamber daily.

(recommended)

Cleaning: Use new plastic cups daily (recommended)

Aeration: None (recommended)

Test Duration: Until 60% or more of control females have three broods

(maximum test duration 8 days) (required)

Endpoints: Survival and reproduction (required)

Test Acceptability: 80% or greater survival of all control organisms and an average of 15 or more

young per surviving female in the control solutions. 60% of surviving control

females must produce three broods. (required)

Sampling Requirements: Minimum of three samples with a maximum holding time of 36 hours before

first use. (required)

Sample volume required: 1 L/Day (recommended)

CERIODAPHNIA DUBIA DATASHEETS & STATISTICAL ANALYSIS

NEW ENGLAND BIOASSAY TOXICITY DATA FORM CHRONIC COVER SHEET

CLIENT:	New England Testing Laboratories	C.dubia TEST ID #	18-1474
ADDRESS:	59 Greenhill Street	CHAIN OF CUSTODY #	C38-3732/33
	West Warwick, RI 02893	NEB PROJECT #	05.0044476.00
PERMITTEE:	Lowell RWWU	SAMPLE ID:	Effluent
PERMIT NUMBER:	MA0100633		
DILUTION WATER:	Laboratory Soft Water		

INVERTEBRATES

TEST SET-UP TECHNICIAN:	ТВР
TEST SPECIES:	Ceriodaphnia dubia
NEB LOT #	Cd18(RMH 229)
AGE:	< 24 hours
TEST SOLUTION VOLUME (mls):	15
ORGANISMS PER TEST CHAMBER:	1
ORGANISMS PER CONCENTRATION:	10

LABORATORY CONTROL WATER (SRCF)

Lot Number	Hardness mg/L CaCO₃	Alkalinity mg/L CaCO ₃			
C38-S022	48	35			

	DATE	TIME
TEST START:	10/2/18	1634
TEST END:	10/10/18	1435

COMMENTS:		
	7	
REVIEWED BY:	// Mills	DATE:

NEW ENGLAND BIOASSAY - CHRONIC TOXICITY TEST BROOD DATA SHEET

FACILITY NAME & ADI	DRESS: Lowel	WW Utili	ty, 1st Street Bou	llevard, Lowell MA	01850		
NEB PROJECT NUMBE	R: 05.004	NEB 1	EST NUMBER:	18-1474	COC#	C38-3732/33	
TEST ORGANISM:	TEST ORGANISM: Ceriodaphnia dubia			<24 hours		Lot #	Cd18(RMH 229)
START DATE:	10/2/18	TIME:	1634	END DATE:	10/10/18	TIME:	1435

	Culture Lot# Cd18(RMH 229)														
	Cup#	A1	A5	A6	A8	A10	B2	B4	В8	B12	B13	Total Live	# Live	Analyst-	Analyst-
Effluent	Day					Rep	licate					Young	Adults	Transfer	Counts
Concentration	Number	Α	В	С	D	E	F	G	Н		J				
	0	✓	✓	✓	✓	✓	✓	✓	✓	√	✓	0	10	ТВР	
	1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10	PD	
	2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10	cw	
NEB Lab	3	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	0	10	MM	ММ
Synthetic	4	✓	5	6	√/x	5	4	7	3	8	5	43	9	cw	cw
Diluent	5	3	8	✓	Х	3	2	9	11	10	9	55	9	ко	ко
	6	3	✓	2	Х	✓	2	✓	13	✓	8	28	9	PD	PD
	7	6	10	✓	Х	8	9	9	8	10	3	55	9	ТВР	ТВР
	8	✓	✓	3	Х	✓	✓	✓	8	✓	✓	3	9	MM	ММ
	totals	12	23	11	0	16	17	25	27	28	25	184	9		MC
		Α	В	С	D	Ε	F	G	Н	l l	J			DYS-R	
	0	√	✓	✓	✓	√	✓	✓	✓	✓	✓	0	10		
	1	✓_	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
	2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		1300
Merrimack	3	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
River	4	5	6	7	3	6	6	6	6	7	6	58	10	400	
Control	5	11	10	15	13	12	14	13	10	9	12	119	10		
	6	20	14	13	✓	✓	19	1	11	✓	9	87	10		
	7	8	4	4	√/x	6	9	√/x	18	7	6	36	8		
	8	✓	✓	✓	Х	✓	√	Х	✓	✓	✓	0	8		
	totals	36	34	39	16	24	48	20	27	23	33	300	8		
		Α	В	С	D	E	F	G	Н	I	J	g 1g			26.7
	0	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		Mish
	1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
	2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	_ 10		
	3	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
6.25%	4	✓	6	6	5	5	2	3	6	✓	1	34	10		
	5	13	11	12	9	9	13	2	9	12	10	100	10		En g
	6	14	3	4	3	10	4	2	2	✓	5	47	10		
	7	9	10	✓	19	5	13	√/x	7	16	3	82	9		
	8	15	3	21	19	16	18	Х	15	✓	✓	39	9		h Ke
	totals	36	33	43	36	29	32	7	39	28	19	302	9		

Notes:

Replicates in which the neonates are marked with a strike are judged to contain 4th broods (rather than split-broods), and the 4th brood is not included in the reproduction totals per EPA-821-R-02-013.

NEW ENGLAND BIOASSAY - CHRONIC TOXICITY TEST BROOD DATA SHEET

FACILITY NAME & ADDRESS: Lowell Regional WW Utility, 1st Street Boulevard, Lowell MA 01850

NEB PROJECT NUMBER: 05.0044476.00 ORGANISM: Ceriodaphnia dubia START DATE: 10/2/18

												Total		/ Light	V'
Effluent	Day					Rep	licate					Live	# Live Adults	hit.	
Concentration	Number	Α	В	С	D	Ε	F	G	Н	1	J	Young	710/0/12		
	0	\	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
	1	√	✓	✓	✓	✓	✓	✓	√	✓	✓	0	10		
	2	>	✓	✓	✓	✓	✓	✓_	√	✓	✓	0	10	118	
	3	✓	✓	✓	✓	✓	✓	✓	√	✓	✓	0	10		
12.5%	4	✓	7	7	6	5	✓	✓	3	7	7	42	10		
12.5/0	5	10	11	10	15	6	13	12	13	14	9	113	10	14.	
	6	13	6	4	7	20	19	11	1	✓	6	87	10		
	7	✓	√/x	7	2	3	4	9	16	13	15	69	9	AL IN	
	8	9	Х	16	19	18	✓	√/x	17	15	13	9	8		
	totals	32	24	28	30	34	36	32	33	34	37	320	8		
		Α	В	С	D	E	F	G	Н		J				
	0	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
	1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10	Patters,	1.50
	2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10	9,111	
	3	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
25%	4	7	7	5	6	5	5	✓	5	3	✓	43	10		
	5	14	14	15	10	12	14	10	13	6	10	118	10		
	6	4	11	5	7	3	13	4	13	16	6	82	10	187 - 1	
	7	3	6	6	6	14	7	✓	14	7	7	56	10		
	8	3	✓	√/x	✓	4	14	✓	✓	✓	✓	7	9		
	totals	31	38	31	29	38	39	14	31	32	23	306	9		
		Α	В	С	D	Е	F	G	Н	I	J				
	0	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
	1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		Walty
	2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		LI III
	3	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
50%	4	6	6	9	8	6	✓	✓	6	✓	6	47	10		
	5	12	9	2	14	13	11	✓	✓	11	12	84	10	9 - 20	
	6	5	13	5	9	3	1	11	1	✓	✓	48	10		
	7	5	10	√/x	9	3	15	11	11	16	9	79	9		
	8	✓	✓	Х	✓	8	9	15	8	11	3	54	9		
	totals	28	28	16	40	33	36	37	26	38	30	312	9		
		Α	В	С	D	E	F	G	Н	I	J			To Tree	
	0	✓	✓	✓	✓	\	✓	√	✓	✓	✓	0	10	ATE !	HW2
	1	√	✓	√	✓	\	✓	✓	✓	✓	✓	0	10	RIL.	
	2	✓	\	✓	✓	√	✓	✓	√	✓	√	0	10		2.3
	3	√	✓	✓	✓	\	✓	✓	✓	✓	✓	0	10	Bud H	
100%	4	✓	6	6	8	6	3/x	6	√	6	5	46	9		20
	5	13	12	5	13	10	Х	13	11	12	11	100	9		
	6	21	8	16	4	7	Х	3	6	13	7	85	9		
	7	7	12	6	3	10	Х	9	9	12	15	71	9	THE REAL PROPERTY.	EART
	8	8	11	√	√	16	Х	5	9	√	√	14	9		
	totals	41	38	33	28	33	3	36	35	31	38	316	9		

12.5

25

50

100

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

1/1

Report Date:

22 Oct-18 10:55 (p 1 of 6)

CETIS	i Ana	lytical Repo	ort					-	t Code/ID:	22	18-1474 / 1	55 (ԲՐԾՐԵ 1-6084-834
Cerioda	aphnia	7-d Survival and	d Reproduc	tion Te	est					N	lew Englan	
Analysi	s ID:	15-7797-3607	End	point:	2d Survival Rat	e		CE	ΓIS Version:	CETISv	1.9.4	
Analyze	ed:	22 Oct-18 10:54	Ana	lysis:	Linear Interpola	ation (ICPII	N)	Sta	tus Level:	1		
Batch I	D:	11-7260-4996	Test	Type:	Reproduction-S	Survival (7d)	Ana	ılyst:			
Start Da	ate:	02 Oct-18 16:34	Prot	ocol:	EPA/821/R-02-	013 (2002)	•	Dile	ent: Red	ceiving Wat	er	
Ending	Date:	10 Oct-18 14:35	Spe	cies:	Ceriodaphnia d	ubia		Brii	ne: Not	Applicable		
Test Le	ngth:	7d 22h	Taxo	on:	Branchiopoda			Sou	ırce: In-t	louse Cultu	ire	Age: <24
Sample	ID:	09-1234-8408	Cod	e:	366154F8			Pro	ject:			
Sample	Date:	01 Oct-18 07:00	Mate	erial:	WWTF Effluent	t		Sou	ırce: Lov	vell RWWU	(MA010063	i 3)
Receipt	t Date:	01 Oct-18 16:30	CAS	(PC):				Sta	tion:			
Sample	Age:	34h	Clie	nt:	New England T	esting Lab	s					
Linear	Interpo	lation Options										
X Trans	form	Y Transform	See	d	Resamples	Exp 95%	6 CL Met	nod				
Log(X)		Linear	1386	946	200	Yes	Two	Point Inter	polation			
Point E	stimate	es										
Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCI	-					
LC50	>100	n/a	n/a	<1	n/a	n/a						
2d Surv	ival Ra	ate Summary				Calc	ulated Varia	te(A/B)			Isotor	nic Variate
Conc-%	, 0	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0		D	10	1.0000		1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
6.25			10	1.0000		1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
12.5			10	1.0000		1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
25			10	1.0000		1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
50			10	1.0000		1,0000	0.0000	0.00%	0.0%	10/10	1	0.0%
100			10	1.0000	1.0000	1,0000	0.0000	0.00%	0.0%	10/10	1	0.0%
2d Surv	ival Ra	ate Detail										
Conc-%	, ,	Code	Rep 1	Rep 2		Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
כ		D	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6.25			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12.5			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50			1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100			1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2d Surv	ival Ra	ate Binomials										
Conc-%	, D	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0		D	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
6.25			1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1

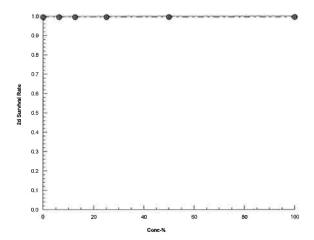
Report Date: Test Code/ID: 22 Oct-18 10:55 (p 2 of 6) 18-1474 / 11-6084-8346

Ceriodaphnia 7-d Survival and Reproduction Test

New England Bioassay

Analyzed:

Analysis ID: 15-7797-3607 22 Oct-18 10:54


2d Survival Rate Endpoint: Analysis: Linear Interpolation (ICPIN) **CETIS Version:**

CETISv1.9.4

Status Level:

Graphics

000-222-335-4

Report Date: Test Code/ID: 22 Oct-18 10:55 (p 3 of 6) 18-1474 / 11-6084-8346

Sample Date Date Date Ol Ol-16									Tes	t Code/ID:		18-1474 / 1	1-6084-8346
Marily	Cerioda	aphnia 7	-d Survival an	d Reproduc	ction Te	est					N	lew Englan	d Bioassay
Batch ID:	Analysi	is ID: 1	8-6055-0937	End	point:	7d Survival Rat	е		CE	TIS Version	: CETISv	1.9.4	
Mart	Analyze	ed: 2	2 Oct-18 10:54	Ana	lysis:	Linear Interpola	tion (ICPI	٧)	Sta	tus Level:	1		
Part	Batch II	D : 1	1-7260-4996	Test	Type:	Reproduction-S	Survival (7d)	Ana	alyst:			
Table Length: 7d 2½ 94-124-8408 Code: 36154548 WWTF Efflux VWTF Effl	Start Da	ate: 0	2 Oct-18 16:34	Prof	ocol:	EPA/821/R-02-	013 (2002)	•	Dile	uent: Re	ceiving Wat	er	
Sample Date 01 02+124-8408 Code Material WWTF Effluent WWTF Effluent Source Source Colvel RWWU (MA0100633) Page Sample Age: 34 Colle Tolvel Tolvel Source Tolvel	Ending	Date: 1	0 Oct-18 14:35	Spe	cies:	Ceriodaphnia d	ubia		Bri	ne: No	t Applicable		
Sample Date 01 Oct 18 07 05 05 05 05 05 05 05	Test Le	ength: 7	'd 22h	Taxe	on:	Branchiopoda			Soi	urce: In-	House Cultu	ıre	Age: <24
Case Paris Case	Sample	: ID: 0	9-1234-8408	Cod	e:	366154F8			Pro	ject:			
Client: New England Testing Labs Supplication Supplicatio	Sample	Date: 0	1 Oct-18 07:00	Mate	erial:	WWTF Effluent	t		Sou	urce: Lo	well RWWU	(MA010063	3)
	•			CAS	(PC):				Sta	tion:			
X Transform Y Transform Transfo	Sample	Age: 3	4h	Clie	nt:	New England T	esting Lab	S					
Test Acceptability Criteria Tac Limits Lower Upper Overlap Decision Decisi	Linear I	Interpola	ation Options										
Tack Companies Tack Companies Tack Companies Control Resp 0.9 0.8 >> Yes Passes Criteria		sform	Y Transform										
Attribute Test Stat Lower Upper Overlap Decision	Log(X)		Linear	1148	3434	200	Yes	Two	-Point Inter	polation			
Point Estimates Devil Point Section Point Estimates Point Section Point Point Point Section Point	Test Ac	ceptabil	lity Criteria	TAC L	imits								
Point Estimates			Test Stat	Lower	Uppe		Decision	1					
Level % 95% LCL 95% UCL TU 95% LCL 95% UCL	Control	Resp	0.9	8.0	>>	Yes	Passes (Criteria					
	Point E	stimates	3										
Page	Level	%	95% LCL	95% UCL	TU	95% LCL	95% UCI	_					
Conc-% Code Count Mean Min Max Std Dev CV% %Effect A/B Mean %Effect 0 D 10 0.9000 0.0000 1.0000 0.3162 35.14% 0.0% 9/10 0.9 0.0% 6.25 10 0.9000 0.0000 1.0000 0.3162 35.14% 0.0% 9/10 0.9 0.0% 12.5 10 0.9000 0.0000 1.0000 0.3162 35.14% 0.0% 9/10 0.875 2.789 50 10 0.9000 0.0000 1.0000 0.3162 35.14% 0.0% 9/10 0.875 2.789 100 10 0.9000 0.0000 1.0000 0.3162 35.14% 0.0% 9/10 0.875 2.789 7d Survival Rate Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 9 Rep 2 Rep 3	LC50	>100	n/a	n/a	<1	n/a	n/a						
D	7d Surv	/ival Rat	e Summary				Calc	ulated Varia	ite(A/B)			Isotor	nic Variate
6.25	Conc-%	0	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
12.5	0		D	10	0.900	0.0000	1.0000	0.3162	35.14%		9/10	0.9	0.0%
25													
10													
100 0.9000 0.0000 1.0000 0.3162 35.14% 0.0% 9/10 0.875 2.789 7d Survival Rate Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 9 6.25 1.0000													
7d Survival Rate Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 6 0 D 1.0000 <td></td>													
Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 6 0 D 1.0000 <td></td> <td></td> <td></td> <td>10</td> <td>0.9000</td> <td>0.0000</td> <td>1.0000</td> <td>0.3162</td> <td>35.14%</td> <td>0.0%</td> <td>9/10</td> <td>0.675</td> <td>2.70%</td>				10	0.9000	0.0000	1.0000	0.3162	35.14%	0.0%	9/10	0.675	2.70%
0 D 1.0000	7d Surv	ival Rat	e Detail										
6.25 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000		, D											Rep 10
12.5	•		D										1.0000
25													1.0000
50 1.0000 1.0000 0.0000 1.0000													1.0000
7d Survival Rate Binomials Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 9 0 D 1/1													1.0000
7d Survival Rate Binomials Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 9 0 D 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1													1.0000
Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Rep 9 Rep 9 0 D 1/1	100			1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000
0 D 1/1 </td <td>7d Surv</td> <td>ival Rat</td> <td>e Binomials</td> <td></td>	7d Surv	ival Rat	e Binomials										
6.25 1/1		9										-	Rep 10
12.5 1/1 </td <td>_</td> <td></td> <td>ט</td> <td></td>	_		ט										
25 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/													
50 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/													
100 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1													
	100			1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1

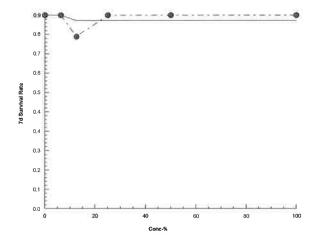
000-222-335-4 CETIS™ v1.9.4.1 Analyst:_____ QA:____

Report Date: Test Code/ID: 22 Oct-18 10:55 (p 4 of 6) 18-1474 / 11-6084-8346

Ceriodaphnia 7-d Survival and Reproduction Test

New England Bioassay

Analyzed:


Analysis ID: 18-6055-0937 22 Oct-18 10:54

Endpoint: 7d Survival Rate Linear Interpolation (ICPIN) Analysis:

CETIS Version: Status Level:

CETISv1.9.4 1

Graphics

Report Date:

22 Oct-18 10:55 (p 5 of 6)

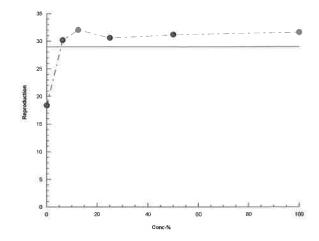
CETIS A	nalytical Repo	ort						Test Cod				1-6084-834
Ceriodaphi	nia 7-d Survival an	d Reproduc	ction Te	est						Ne	ew Englan	d Bioassay
Analysis ID			point:	Reproduction				CETIS Ve		CETISv1	9.4	
Analyzed:	22 Oct-18 10:55	Ana	lysis:	Linear Interpola	tion (ICPIN))		Status Le	evel:	1		
Batch ID:	11-7260-4996	Test	Туре:	Reproduction-S	urvival (7d)			Analyst:				
Start Date:	02 Oct-18 16:34	Prot	ocol:	EPA/821/R-02-	013 (2002)			Diluent:	Rece	eiving Wate	r	
Ending Dat	e: 10 Oct-18 14:35	Spe	cies:	Ceriodaphnia d	ubia			Brine:	Not /	Applicable		
Test Lengtl	n: 7d 22h	Taxe	on:	Branchiopoda				Source:	In-He	ouse Cultur	е	Age: <24
Sample ID:	09-1234-8408	Cod	e:	366154F8				Project:				
Sample Dat	e: 01 Oct-18 07:00	Mate	erial:	WWTF Effluent				Source:	Lowe	ell RWWU (MA010063	33)
Receipt Da	te: 01 Oct-18 16:30	CAS	(PC):					Station:				
Sample Age	e: 34h	Clie	nt:	New England T	esting Labs							
Linear Inter	polation Options											
X Transform	n Y Transform	See	d	Resamples	Exp 95%	CL N	/lethod					
Linear	Linear	1252	2771	200	Yes	T	wo-Point	Interpolation	on			
Test Accep	tability Criteria	TAC L	imits									
Attribute	Test Stat		Uppe	r Overlap	Decision							
Control Res	p 18.4	15	>>	Yes	Passes C	riteria						
Point Estim	ates											
Level %	95% LCL	95% UCL	TU	95% LCL	95% UCL							
IC25 >1	00 n/a	n/a	<1	n/a	n/a							
IC50 >1	00 n/a	n/a	<1	n/a	n/a							
Reproducti	on Summary				Cal	culated	l Variate				Isoto	nic Variate
Conc-%	Code	Count	Mean	Min	Max	Std D	ev CV%	% %E	Effect		Mean	%Effect
0	D	10	18.4	0	28	8.922	48.4	9% 0.0)%		29	0.0%
6.25		10	30.2	7	43	10.49	34.7	2% -64	I.13%		29	0.0%
12.5		10	32	24	37	3.859	12.0	6% -73	3.91%		29	0.0%
25		10	30.6	14	39	7.589	24.8	0% -66	5.3%		29	0.0%
50		10	31.2	16	40	7,177	23.0	0% -69	9.57%		29	0.0%
100		10	31.6	3	41	10.73	33.9	C0/ 74	.74%		29	0.0%

Reproduction	Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	D	12	23	11	0	16	17	25	27	28	25
6.25		36	33	43	36	29	32	7	39	28	19
12.5		32	24	28	30	34	36	32	33	34	37
25		31	38	31	29	38	39	14	31	32	23
50		28	28	16	40	33	36	37	26	38	30
100		41	38	33	28	33	3	36	35	31	38

000-222-335-4 CETIS™ v1.9.4.1 Analyst:_____ QA:____

Report Date: Test Code/ID:

22 Oct-18 10:55 (p 6 of 6) 18-1474 / 11-6084-8346


Ceriodaphnia 7-d Survival and Reproduction Test

New Engl

New England Bioassay

Analysis ID:21-1263-9225Endpoint:ReproductionCETIS Version;CETISv1.9.4Analyzed:22 Oct-18 10:55Analysis:Linear Interpolation (ICPIN)Status Level:1

Graphics

000-222-335-4

Report Date: Test Code/ID: 22 Oct-18 10:55 (p 1 of 2) 18-1474 / 11-6084-8346

Ceriodaphnia 7-	-d Survival an	d Reprodu	ction Tes	st						N	ew Englan	d Bioas	say
Analysis ID: 19	9-7387-3585	End	point:	7d Survival Rat	te		CETI	S Versi	on:	CETISv1	.9.4		
Analyzed: 22	2 Oct-18 10:54	Ana	lysis:	STP 2xK Conti	ngency Tabl	es	Statu	s Level	l:	1			
Batch ID: 1	1-7260-4996	Tes	t Type:	Reproduction-S	Survival (7d)		Anal	/st:					
Start Date: 02	2 Oct-18 16:34	Prof	tocol:	EPA/821/R-02-	-013 (2002)		Dilue	nt:	Rece	iving Wate	er		
Ending Date: 10		Spe	cies:	Ceriodaphnia d	lubia		Brine	e: l	Not A	pplicable			
Test Length: 70	d 22h	Tax	on:	Branchiopoda			Sour	ce:	In-Ho	use Cultui	re 	Age:	<24
	9-1234-8408	Cod		366154F8			Proje						
Sample Date: 0				WWTF Effluen	t		Sour		Lowe	II RWWU	(MA010063	3)	
Receipt Date: 0			(PC):				Stati	on:					
Sample Age: 34	4h	Clie	nt:	New England T	esting Labs								
Data Transform		Alt Hyp					NOEL	LOEL		TOEL	TU		
Untransformed		C > T					100	>100		n/a	1		
Fisher Exact/Bo	nferroni-Holm	1 Test											
Control vs	Group		Test S	tat P-Type	P-Value	Decision	(α:5%)						
Dilution Water	6.25		0.7632		1.0000	-	ificant Effect						
	12,5		0.5000	Exact	1.0000	_	ificant Effect						
	25		0.7632		1.0000	•	ificant Effect						
	50		0.7632		1.0000	_	ificant Effect						
	100		0,7632	Exact	1,0000	Non-Sign	ificant Effect						
Test Acceptabili	ity Criteria	TAC L	imits										
Attribute	Test Stat	Lower	Upper	Overlap	Decision								
Control Resp	0.9	0.8	>>	Yes	Passes C	riteria							
Data Summary													
Conc-%	Code	NR	R	NR + R	Prop NR	Prop R	%Effect						
0	D	9	1	10	0.9	0.1	0.0%						
6.25		9	1	10	0.9	0.1	0.0%						
12.5		8	2	10	0.8	0.2	11.11%						
25		9	1	10	0.9	0.1	0.0%						
50		9	1	10	0.9	0.1	0.0%						
100		9	1	10	0.9	0.1	0.0%						_
7d Survival Rate	e Detail												
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7		Rep 8	Rep 9	Rep	
0	D	1.0000	1.0000		0.0000	1.0000	1.0000	1.0000		1.0000	1.0000	1.000	
6.25		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	כ	1.0000	1.0000	1.000	10
12.5										1.0000	1.0000	4 000	Ю
12.5		1.0000	0.0000		1.0000	1.0000	1.0000	0.0000	כ	1.0000	1.0000	1.000	
25		1.0000 1.0000	0.0000 1.0000	1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	0.0000 1.0000		1.0000	1.0000	1.000	10
				1.0000 0.0000)				
25		1.0000	1.0000	1.0000 0.0000 0.0000	1.0000	1.0000	1.0000	1.0000))	1.0000	1.0000	1.000	00
25 50	e Binomials	1.0000 1.0000	1.0000 1.0000	1.0000 0.0000 0.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	1.0000 1.0000))	1.0000 1.0000	1.0000 1.0000	1.000 1.000	00
25 50 100	Code	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 Rep 2	1.0000 0.0000 0.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 Rep 5	1.0000 1.0000 0.0000	1.0000 1.0000 1.0000)))	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 Rep 9	1.000 1.000 1.000	00
25 50 100 7d Survival Rate Conc-%		1.0000 1.0000 1.0000 Rep 1	1.0000 1.0000 1.0000 Rep 2	1.0000 0.0000 0.0000 1.0000 Rep 3	1.0000 1.0000 1.0000 Rep 4	1.0000 1.0000 1.0000 Rep 5	1.0000 1.0000 0.0000 Rep 6	1.0000 1.0000 1.0000 Rep 7)))	1.0000 1.0000 1.0000 Rep 8	1.0000 1.0000 1.0000 Rep 9	1.000 1.000 1.000 Rep 1	00
25 50 100 7d Survival Rate Conc-% 0 6.25	Code	1.0000 1.0000 1.0000 Rep 1 1/1	1.0000 1.0000 1.0000 Rep 2 1/1 1/1	1.0000 0.0000 0.0000 1.0000 Rep 3	1.0000 1.0000 1.0000 Rep 4 0/1 1/1	1.0000 1.0000 1.0000 Rep 5 1/1 1/1	1.0000 1.0000 0.0000 Rep 6 1/1	1.0000 1.0000 1.0000 Rep 7)))	1.0000 1.0000 1.0000 Rep 8 1/1 1/1	1.0000 1.0000 1.0000 Rep 9	1.000 1.000 1.000 Rep 1/1 1/1	00
25 50 100 7d Survival Rate Conc-%	Code	1.0000 1.0000 1.0000 Rep 1	1.0000 1.0000 1.0000 Rep 2	1.0000 0.0000 0.0000 1.0000 Rep 3	1.0000 1.0000 1.0000 Rep 4	1.0000 1.0000 1.0000 Rep 5 1/1 1/1	1.0000 1.0000 0.0000 Rep 6 1/1 1/1	1.0000 1.0000 1.0000 Rep 7 1/1 0/1)))	1.0000 1.0000 1.0000 Rep 8 1/1 1/1	1.0000 1.0000 1.0000 Rep 9 1/1 1/1	1.000 1.000 1.000 Rep 1 1/1 1/1	00
25 50 100 7d Survival Rate Conc-% 0 6.25	Code	1.0000 1.0000 1.0000 Rep 1 1/1	1.0000 1.0000 1.0000 Rep 2 1/1 1/1	1.0000 0.0000 0.0000 1.0000 Rep 3	1.0000 1.0000 1.0000 Rep 4 0/1 1/1	1.0000 1.0000 1.0000 Rep 5 1/1 1/1	1.0000 1.0000 0.0000 Rep 6 1/1	1.0000 1.0000 1.0000 Rep 7)))	1.0000 1.0000 1.0000 Rep 8 1/1 1/1	1.0000 1.0000 1.0000 Rep 9	1.000 1.000 1.000 Rep 1/1 1/1	00
25 50 100 7d Survival Rate Conc-% 0 6.25 12.5	Code	1.0000 1.0000 1.0000 Rep 1 1/1 1/1	1.0000 1.0000 1.0000 Rep 2 1/1 1/1 0/1	1.0000 0.0000 0.0000 1.0000 Rep 3 1/1 1/1	1.0000 1.0000 1.0000 Rep 4 0/1 1/1	1.0000 1.0000 1.0000 Rep 5 1/1 1/1	1.0000 1.0000 0.0000 Rep 6 1/1 1/1	1.0000 1.0000 1.0000 Rep 7 1/1 0/1)))	1.0000 1.0000 1.0000 Rep 8 1/1 1/1	1.0000 1.0000 1.0000 Rep 9 1/1 1/1	1.000 1.000 1.000 Rep 1 1/1 1/1	00

CETIS™ v1.9.4.1 Analyst:_____ QA:_____

Report Date:

22 Oct-18 10:55 (p 2 of 2) 18-1474 / 11-6084-8346

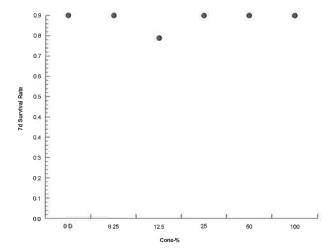
New England Bioassay

Test Code/ID:

Analysis ID:

19-7387-3585 22 Oct-18 10:54

Ceriodaphnia 7-d Survival and Reproduction Test


Endpoint: 7d Survival Rate Analysis:

STP 2xK Contingency Tables

CETIS Version: Status Level:

CETISv1.9.4 1

Analyzed: **Graphics**

Report Date: Test Code/ID:

22 Oct-18 10:55 (p 1 of 2) 18-1474 / 11-6084-8346

								rest	Code/ID		10-14/4/ 1	1-0004-0340
Ceriodaphnia 7-0	d Survival an	d Reprodu	ction Test							N	ew Englan	d Bioassay
Analysis ID: 00	-3156-5633	End	point: Re	eproduction				CET	IS Versio	n: CETISv1	.9.4	
Analyzed: 22	Oct-18 10:55	Ana	lysis: No	onparametric-	Control v	s Tre	eatments	Stat	us Level:	1		
Batch ID: 11	-7260-4996	Tes	t Type: Re	eproduction-S	Survival (7	d)		Anai	yst:			
Start Date: 02	Oct-18 16:34	Pro	tocol: El	PA/821/R-02-	013 (2002	2)		Dilu	ent: R	Receiving Wate	Г	
Ending Date: 10		Spe	cies: Ce	eriodaphnia d	ubia			Brin	e: N	lot Applicable		
Test Length: 7d	22h	Тах	on: Br	ranchiopoda				Sou	rce: Ir	n-House Cultur	е	Age: <24
•	-1234-8408	Cod		6154F8				Proj				
Sample Date: 01				WTF Effluent	t			Sou		owell RWWU	(MA010063	3)
Receipt Date: 01			6 (PC):					Stati	ion:			
Sample Age: 34	n 	Clie	nt: Ne	ew England T	esting Lai	DS ——						
Data Transform		Alt Hyp						NOEL	LOEL	TOEL	TU	PMSD
Untransformed		C > T						100	>100	n/a	1	47.03%
Steel Many-One	Rank Sum Te	est										
Control vs	Conc-%		Test Sta	t Critical	Ties I	DF F	P-Type	P-Value	Decisio	οπ(α:5%)		
Dilution Water	6.25		140.5	75	1 '	18 /	Asymp	1.0000	Non-Si	gnificant Effect		
	12.5		150.5	75			Asymp	1.0000		gnificant Effect		
	25		143.5	75 			Asymp	1.0000		gnificant Effect		
	50 400		145.5	75 75			Asymp	1.0000 1.0000		gnificant Effect gnificant Effect		
	100		145.5	75	<u> </u>	10 /	Asymp	1.0000	NOII-SI	gnilicant Eneci	•	
Test Acceptabilit	y Criteria	TAC L	imits									
Attribute	Test Stat		Upper	Overlap	Decisio	_						
Control Resp	18.4	15	>>	Yes	Passes	Crite	eria ————					
ANOVA Table												
Source	Sum Squa	ares	Mean Sc	quare	DF	F	F Stat	P-Value	Decisio	on(α:5%)		
Between	1369.6		273.92		5	3	3.834	0.0048	Signific	ant Effect		
Error	3858.4		71.4519		54	_						
Total	5228				59							
Distributional Te	sts											
Attribute	Test				Test Sta	at (Critical	P-Value	Decisio	on(a:1%)		
Variances	Bartlett Eq	uality of Va	riance Tes	t	9.445	1	15.09	0.0926	Equal \	/ariances		
Distribution	Shapiro-W	/ilk W Norm	ality Test		0.8881		0.9459	5.0E-05	Non-No	ormal Distributi	on	
Reproduction Su	ımmary											
Conc-%	Code	Count	Mean	95% LCL	95% UC		Median	Min	Max	Std Err	CV%	%Effect
0	D	10	18.4	12.02	24.78		20	0	28	2.821	48.49%	0.00%
6.25		10	30.2	22.7	37.7		32.5	7	43	3.316	34.72%	-64.13%
12.5		10	32	29.24	34.76		32.5	24	37	1.22	12.06%	-73.91%
25		10	30.6	25.17	36.03		31 31.5	14 16	39	2.4 2.27	24.80%	-66.30%
50 100		10 10	31.2 31.6	26.07 23.92	36.33 39.28		34	16 3	40 41	3.393	23.00% 33.96%	-69.57% -71.74%
			01.0								0010070	
Reproduction De		_				_						
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4		Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	D	12 36	23	11 43	0		16	17 32	25 7	27 39	28 28	25 19
6.25 12.5		36 32	33	43 28	36 30		29 34	32 36	7 32	39 33	28 34	37
25		32 31	24 38	28 31	29		38	3 0 39	32 14	33 31	32	23
50		28	28	16	40		33	3 9 36	37	26	38	30
100		41	38	33	28		33	3	36	35	31	38
100		71	50	55	20			J	50	55	U 1	55

000-222-335-4 CETIS™ v1.9.4.1 Analyst:_____ QA:_____

Report Date: Test Code/ID: 22 Oct-18 10:55 (p 2 of 2) 18-1474 / 11-6084-8346

Ceriodaphnia 7-d Survival and Reproduction Test

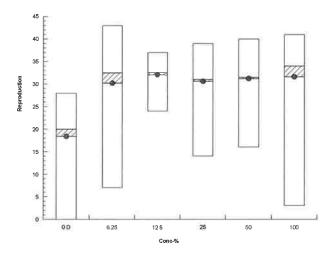
New England Bioassay

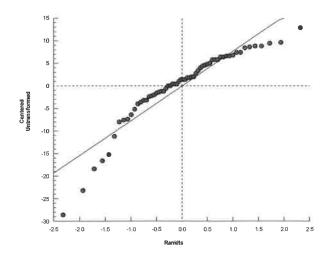
Analysis ID: Analyzed: 22 Oct-18 10:55

00-3156-5633

Endpoint: Reproduction

Nonparametric-Control vs Treatments


CETIS Version: CETISv1.9.4


Analysis:

Status Level:

1

Graphics

NEB'S DATA SHEET FOR ROUTINE CHEMICAL AND PHYSICAL DETERMINATIONS

FACILITY NAME & ADDR	ESS:	Lowell Regi	onal WW U	tility, 1st Sti	reet Bouleva	rd, Lowell N	ИА 01850	
NEB PROJECT NUMBER:			5.0044476.0		TEST ORGA			iodaphnia dubia
DILUTION WATER SOUR	7		ratory Soft		START DAT		10/2/18	
ANALYST	PD	CD	CD	ММ	ко	ко	PD	ТВР
NEB Lab Diluent	1	2	3	4	5	6	7	8
Temp °C Initial	26.0	25.2	25.5	24.4	25.0	25.5	25.5	25.5
D.O. mg/L Initial	8.1	8.2	8.1	8.8	8.4	8.4	8.3	8.2
pH s.u. Initial	7.3	7.4	7.5	7.4	7.6	7.6	7.7	7.0
Conductivity µS Initial	185	180	178	183	185	187	187	190
Temp °C Final	25.8	26.0	25.4	25.5	25.5	24.9	25.4	25.5
D.O. mg/L Final	8.3	8.0	8.2	8.2	8.2	8.2	8.0	7.9
pH s.u. Final	7.5	7.7	7.9	7.5	7.7	7.7	7.6	7.8
Conductivity µS Final	188	184	196	193	211	202	195	194
Merrimack River Control	1	2	3	4	5	6	7	8
Temp °C Initial	25.9	25.3	26.0	24.7	25.5	25.6	25.1	25.3
D.O. mg/L Initial	8.4	8.8	9.2	9.2	9.2	8.3	8.8	8.9
pH s.u. Initial	7.3	7.3	7.5	7.3	7.5	7.4	7.5	7.0
Conductivity µS Initial	155	156	167	167	143	144	144	143
Temp °C Final	25.8	26.0	25.9	25.7	25.5	24.6	25.2	25.6
D.O. mg/L Final	8.6	8.4	8.5	8.3	8.5	8.4	8.0	8.0
pH s.u. Final	7.5	8.0	7.8	7.6	7.9	7.6	7.4	7.7
Conductivity µS Final	170	163	180	180	158	162	161	158
6.25%	1	2	3	4	5	6	7	8
Temp °C Initial	25.9	25.5	25.9	24.7	25.5	25.7	25.4	25.6
D.O. mg/L Initial	8.7	8.2	8.1	8.9	8.9	9.2	8.6	8.2
pH s.u. Initial	7.2	7.3	7.6	7.3	7.5	7.6	7.6	7.2
Conductivity µS Initial	224	232	234	239	252	256	248	250
Temp °C Final	25.8	26.0	25.7	25.7	25.5	24.8	25.3	25.5
D.O. mg/L Final	8.7	8.4	8.7	8.3	8.6	8.6	8.3	8.2
pH s.u. Final	7.5	7.9	8.2	7.7	8.0	8.2	7.5	7.8
Conductivity µS Final	234	236	243	255	260	276	260	260
12.5%	1	2	3	4	5	6	7	8
Temp °C Initial	26.0	25.5	26.0	24.0	25.2	25.7	25.3	25.6
D.O. mg/L Initial	8.2	8.2	8.1	9.0	8.6	8.4	8.4	8.2
pH s.u. Initial	7.3	7.4	7.6	7.3	7.6	7.7	7.6	7.2
Conductivity µS Initial	274	278	280	290	313	311	329	316
Temp °C Final	25.9	26.0	25.8	25.8	25.6	24.7	25.2	25.5
D.O. mg/L Final	8.7	8.6	8.8	8.5	8.8	8.8	8.4	8.3
pH s.u. Final	7.5	8.0	8.2	7.7	8.1	8.2	7.6	7.9
Conductivity µS Final	283	280	289	309	322	340	338	321

NEB'S DATA SHEET FOR ROUTINE CHEMICAL AND PHYSICAL DETERMINATIONS

FACILITY NAME & ADDR		Lowell Reg			eet Bouleva			
NEB PROJECT NUMBER:			5.0044476.0		TEST ORGA	NISM	Ceri	odaphnia dubia
DILUTION WATER SOUR	CE:	Labo	ratory Soft	Water	START DAT	E:	10/2/18	TIME: 1634
25%	1	2	3	4	5	6	7	8
Temp °C Initial	26.0	25.4	26.0	24.0	25.2	25.8	25.3	25.5
D.O. mg/L Initial	8.2	8.2	8.2	8.9	8.5	8.4	8.4	8.2
pH s.u. Initial	7.3	7.5	7.6	7.4	7.6	7.6	7.6	7.2
Conductivity µS Initial	379	398	392	413	436	447	435	457
Temp °C Final	25.8	26.0	25.9	25.9	25.6	24.6	25.2	25.4
D.O. mg/L Final	8.8	8.6	8.8	8.5	8.8	8.9	8.5	8.4
pH s.u. Final	7.9	8.1	8.3	7.7	8.1	8.3	7.7	8.0
Conductivity µS Final	384	397	400	421	441	461	447	457
50%	1	2	3	4	5	6	7	8
Temp °C Initial	26.0	25.5	26.0	24.1	25.2	25.9	25.2	25.5
D.O. mg/L Initial	8.3	8.3	8.4	8.9	8.6	8.4	8.6	8.3
pH s.u. Initial	7.3	7.4	7.5	7.3	7.5	7.5	7.5	7.3
Conductivity µS Initial	592	595	623	621	705	715	707	715
Temp °C Final	25.9	26.0	25.9	25.9	25.6	24.7	25.3	25.4
D.O. mg/L Final	8.9	8.7	9.0	8.6	8.7	9.0	8.4	8.5
pH s.u. Final	8.0	8.1	8.2	7.8	8.1	8.3	7.8	8.1
Conductivity µS Final	592	586	632	617	712	722	711	704
100%	1	2	3	4	5	6	7	8
Temp °C Initial	25.9	25.3	26.0	24.8	25.3	26.0	24.9	25.4
D.O. mg/L Initial	8.5	8.4	9.2	8.9	8.7	8.4	8.8	8.5
pH s.u. Initial	7.2	7.3	7.3	7.2	7.3	7.3	7.4	7.2
Conductivity µS Initial	1,022	1,014	1,072	1,076	1,231	1,242	1,234	1236
Temp °C Final	25.9	26.0	25.9	25.9	25.6	24.7	25.3	25.5
D.O. mg/L Final	8.9	8.7	8.9	8.6	8.9	9.0	8.4	8.6
pH s.u. Final	8.1	8.1	8.1	7.8	8.2	8.3	8.0	8.1
Conductivity µS Final	1,008	991	1,058	1,090	1,219	1,323	1,234	1220
	1	2	3	4	5	6	7	Remarks
Temp °C Initial								
D.O. mg/L Initial								
pH s.u. Initial								9
Conductivity µS Initial								
Temp °C Final								
D.O. mg/L Final								
pH s.u. Final								
Conductivity µS Final								

Tab	le o	f Ra	ndo	m P	ermuta	tion	s of	16				C.d	ubia	Tes	t ID#		18-1	L474	ļ
7	12	15	15	1	2	7	16	10	2	14	15	7	13	13	10	6	1	8	10
13	3	8	16	7	10	11	10	13	5	11	7	13	16	7	7	5	13	2	14
3	1	4	5	14	13	3	14	9	13	13	2	9	15	6	2	8	4	5	8
11	8	16	14	15	6	2	6	2	16	8	5	12	3	9	13	4	3	10	4
14	9	1	6	3	9	14	13	8	6	5	8	14	7	3	15	13	11	4	7
2	16	10	13	5	5	13	2	11	7	3	12	5	14	12	16	2	2	9	15
4	6	13	7	2	15	1	9	1	4	7	10	6	9	11	9	7	6	16	11
6	14	6	10	4	14	4	15	3	3	4	16	2	6	5	1	12	10	6	9
10	15	2	1	13	12	16	3	4	8	10	1	15	5	14	12	14	12	3	2
12	10	7	12	9	11	9	8	12	14	15	4	11	8	16	8	9	14	14	1
15	7	5	2	10	7	8	12	6	15	6	13	16	12	15	4	11	8	12	6
16	2	11	8	8	8	15	5	16	1	1	9	8	1	8	14	16	5	13	5
9	13	14	3	6	4	10	11	5	12	9	3	10	4	4	3	10	9	1	3
8	11	9	4	11	3	12	7	7	10	12	14	3	10	1	6	15	16	15	12
1	5	12	11	16	16	5	4	14	9	16	11	1	2	10	5	1	15	7	13
5	4	3	9	12	1	6	1	15	11	2	6	4	11	2	11	3	7	11	16
			conc	reps															
11	8	16	5	5	13	1	13	2	16	14	12	9	8	7	5	13	3	13	3
2	2	8	8	14	16	4	3	8	11	10	14	15	1	2	11	4	5	15	9
6	13	2	13	6	5	9	15	11	10	12	6	16	15	16	9	10	12	16	15
14	12	4	16	16	11	14	10	5	12	3	3	12	14	15	13	6	4	1	16
8	6	3	9	4	10	6	4	16	2	2	9	8	16	4	6	5	15	7	8
9	15	12	10	3	2	12	6	1	15	4	13	7	7	9	12	14	8	8	11
3	10	11	12	13	12	5	11	7	8	9	5	14	11	10	1	3	13	3	5
16	1	13	14	8	14	15	5	3	7	11	15	6	12	5	7	11	1	14	4
1	14	14	2	9	15	16	14	6	14	7	8	3	13	11	8	7	7	12	7
4	4	6	4	12	3	11	8	15	9	8	1	13	6	3	3	15	9	9	12
15	5	1	11	10	6	3	7	10	5	5	11	10	10	12	15	16	14	5	2
5	3	5	6	7	7	13	2	14	3	16	4	5	5	13	4	9	16	2	6
12	7	15	15	15	9	8	12	12	13	15	10	1	4	6	16	2	6	11	1
10	11	10	3	2	4	2	1	4	6	6	7	11	9	14	10	8	11	4	13
7	9	7	7	11	1	7	16	13	1	13	2	4	2	1	2	12	2	10	14
13	16	9	1	1	8	10	9	9	4	1	16	2	3	8	14	1	10	6	10
		-	_		_		_	_	•	_		_		•		_		•	
1	6	7	4	8	6	5	2	8	15	4	6	6	1	4	5	7	13	2	10
9	15	11	3	11	15	9	10	1	3	8	2	15	7	9	8	16	1	14	3
10	16	4	5	12	9	16	11	7	1	7	16	11	8	3	3	12	2	3	4
4	14	1	9	5	5	4	13	6	8	15	5	12	5	7	16	5	11	8	1
7	3	13	14	15	2	1	14	16	5	14	9	2	16	1	12	6	14	4	13
16	11	2	1	14	16	6	9	3	4	16	14	3	15	11	11	3	9	12	5
3	10	16	16	13	7	13	1	11	14	9	10	16	2	10	2	10	7	10	16
11	13	9	13	4	13	8	3	5	13	10	12	5	12	5	14	13	16	5	6
15	2	3	12	9	12	2	4	13	10	3	13	14	4	2	1	14	8	6	12
14	1	14	6	10	1	3	12	4	2	2	4	13	3	16	9	9	3	7	14
13	12	5	11	3	11	15	8	2	7	11	7	8	14	6	4	4	4	15	11
12	5	10	7	2	14	7	15	14	16	13	1	9	10	12	10	11	10	9	8
8	9	8	10	6	4	11	7	10	11	6	8	4	9	8	15	8	6	11	9
2	7	6	2	1	8	10	6	15	12	1	11	7	11	13	6	1	15	13	15
6	4	15	8	16	10	14	16	9	6	12	3	10	6	14	7	2	12	16	7
5	8	12	15	7	3	12	5	12	9	5	15	1	13	15	13	15	5	1	2
13	4	10	4	16	13	16	13	5	3	6	14	1	16	8	7	2	3	3	12
5	14	4	6	8	2	15	1	13	14	16	4	15	4	3	12	12	1	4	7
2	2	2	15	14	16	9	12	16	6	10	15	14	9	10	1	14	8	8	16
7	12	15	8	12	3	5	14	7	12	5	13	16	1	7	5	11	2	9	3
6	9	7	14	9	14	10	11	15	11	12	1	12	12	14	16	3	11	11	8
14	5	16	7	10	8	11	8	14	13	7	11	6	3	11	4	4	6	6	9
15	11	8	9	7	12	8	7	1	15	9	3	3	7	13	11	10	4	5	1
11	6	6	1	4	1	3	16	12	5	4	9	13	13	6	8	15	9	1	14
4	10	3	16	2	11	7	9	6	9	1	8	4	11	5	2	16	10	12	4
1	8	1	13	1	15	4	4	11	4	2	16	5	8	1	9	5	12	16	6
9	7	14	2	6	4	14	10	9	8	15	10	7	10	9	10	6	14	10	11
12	1	9	10	15	5	2	15	10	2	14	2	8	2	4	13	8	5	15	5
3	3	12	11	5	9	6	6	3	10	13	12	9	6	2	15	7	15	7	13
10	15	11	5	13	7	12	5	2	7	11	5	10	15	12	3	1	13	13	10
8	13	13	3	3	10	13	2	4	1	8	6	11	14	15	6	9	16	2	2
16	16	5	12	11	6	1	3	8	16	3	7	2	5	16	14	13	7	14	15

Brood mother source: RMH 224 A-8 Source's brood size: 21 (Qty.)

Lowell 10.2-18

Brood	mother	source	RMI	+ 224	A-	8 Sou	rce's broo	od size:	21	(Qty.)				Lowel	(10.2	-10
Tech	AH	And	Art	44		AH	ArH	AH								
Date	9.25	9.26	9.27	9.28		9.30	10.1	10.2								
Day	0	1	2	3	4	5	6	7		8	9	10	11	12	13	14
acc.		-	-		-											
1	N	N	N	4		27	У	Y 13	1							
2	N	N	N	5		7	Y	. 2	2							
3	N	N	N	6		8	Y	Ν	3							
4	N	N	N	6		9	Ч	N	4							
5	N	N	N	5		8	7	T2 Y15	5							
6	N	N	N	7		9	7	T3 Y14	6							
7	N	N	N	6		9	У	N	7							
8	N	N	N	5		10	У	74 Y 13	8							
9	N	N	N	4		10	4	7	9							
10	N	N	N	6		8	у	T5 716	10							
11	N	N	N	6		10	7	N	11							
12	N	N	N	6		9	У	N	12							
13	N	N	И	7		8	y	N	13							

Y = neonates present, and *criterion has been met:* ≥ 20 neonates produced in total by 3rd brood.

Tray diagram

N = no neonates

2B = two broods present. **2Y** = two broods and criterion met: ≥ 20 neos. by 3rd brood.

X = brood mother dead ae = aborted eggs

✓ or **P** = neonates present after renewal on previous day (see time in log).

Test organism collection:

A→ = acceptable for acute testing only

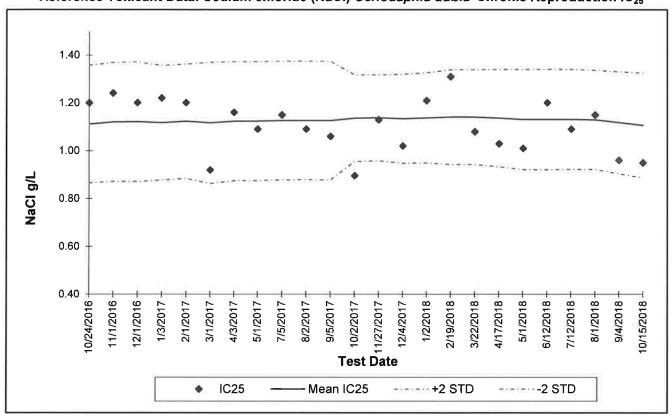
T# = neonates used in test, replicate number of test noted (and brood counted).

acc. = if acclimated, H2O type used w/ renewal this day.

Cei	rioda	ohnia	dubi	a		Cult	ure Cl	hart			Lot#	_cdi	8(RIM	H 22	9)	В
Brood	mothe	source	2m	H 224	В	-10 Sou	ırce's bro	od size:	29	(Qty.)					10:2-15	2
Tech	Art	AH	Aut	Aut		AH	Au	Art								
	9.25	9.26	9.27			9.30	101	10-2								
Day acc.	0	1	2	3	4	5	6	7		8	9	10	11	12	13	14
Cup #	N	N	N	5		8	4	7	1							
2	N	N	N	þ		24	Y	1/14	2							
3	N	N	N	6		24	٦	N	3							
4	N	N	N	5		9	4	Y 15	4							
5	N	N	N	4		24	Y	N	5							
6	N	N	Ν	6		9	4	N	6							
7	N	N	N	4		24	y	Y	7							
8	N	N	N	5		9	4	¥ 14	8							
9	N	N	N	5		24	4	N	9							
10	N	N	N	6		24	4	Ν	10							
11	N	N	N	4		24	Υ		11							
12	N	N	N	5		Z Y	γ	T9 Y 16	12							
13	N	N	N	4		24	y	710 415	13							
Y = nec 2 B = tw	nates pi	esent, a s presen	and <i>criteri</i> it. 2Y =	ion has b two broo	ee <i>n met:</i> ds and cr	≥ 20 ned	onates pro et: ≥ 20 ne	duced in t	otal by	3rd brood	X = brood	d mother		l = no ne e = abor		
√ or P T # = ne	= neona	ates presused in t	sent after est, repli	renewal	on previo	ous day (s st noted (a	see time in	log).	a	cc. = if acc		= accepta	ble for a	cute testi	ng only	-
est org	ganism	collec	tion:		Tra	ay diagrar used?	m					7				
Project	t#		S	ymbols (✓ / P)	(Y/N)		Time pe	eriod, r	neonates	released			Collection	on date/	time
- [004	4476		т :		У	10.2-				2-18/11				18/140	
				Т												
				Т					-							
				T				1								_
111/1				Т												\dashv

SAMPLE RECEIPT CHEMISTRY & CHAIN OF CUSTODY DOCUMENTS

NEW ENGLAND BIOASSAY - INITIAL CHEMISTRY DATA


PERMITTEE:	Lowell RWWU	
NEB JOB #	05.0044476.00	

Ir .						
DATE RECEIVED	10/1/18		10/3/18		10/5/18	
SAMPLE TYPE:	EFF #1	RIVER #1	EFF #2	RIVER #2	EFF #3	RIVER #3
COC#	C38-3732	C38-3733	C38-3754	C38-3755	C38-3787	C38-3788
pH (SU)	7.1	7.4	6.7	7.0	7.6	7.5
Temperature (°C)	9.4	7.8	7.3	7.4	3.8	3.8
Dissolved Oxygen (mg/L)	10.4	10.6	10.1	9.9	8.7	9.0
Conductivity (µmhos)	1,039	154	1,106	173	1,272	147
Salinity (ppt)	<1	<1	<1	<1	< 1	< 1
TRC - DPD (mg/L)	0.039	0.015	0.008	0.016	0.010	0.012
TRC - Amperometric (mg/L)	NA	NA	NA	NA	NA	NA
Hardness (mg/L as CaCO ₃)	86	20	84	22	92	18
Alkalinity (mg/l as CaCO ₃)	70	15	70	15	85	15
Tech Initials	СВ	СВ	ТВР	ТВР	CW	CW

NOTE: NA = NOT APPLICABLE					
Data Reviewed By:	-m/18	Date Reviewed:	11/1/18		

REFERENCE TOXICANT CHARTS

New England Bioassay
Reference Toxicant Data: Sodium chloride (NaCl) Ceriodaphia dubia Chronic Reproduction IC₂₅

Test ID	Date	IC ₂₅	Mean IC ₂₅	STD	-2STD	+2STD	Avg. CV	Repro PMSD (%)	Avg. PMSD (%)
16-1553	10/24/2016	1.20	1.11	0.12	0.87	1.36	0.11	14.94	13.79
16-1592	11/1/2016	1,24	1.12	0.12	0.87	1.37	0.11	23.71	14.69
16-1734	12/1/2016	1.20	1,12	0.13	0.87	1.37	0.11	33.62	16.27
17-14	1/3/2017	1.22	1.12	0.12	0.88	1.36	0.11	10.80	15.85
17-151	2/1/2017	1.20	1.12	0.12	0.88	1.36	0.11	7.93	15.28
17-267	3/1/2017	0.92	1,12	0.13	0.86	1.37	0.11	16.70	15.37
17-480	4/3/2017	1.16	1.12	0.12	0.87	1.37	0.11	13,66	15.27
17-616	5/1/2017	1.09	1.12	0.12	0.88	1.37	0.11	8.00	14.84
17-972	7/5/2017	1.15	1.13	0.12	0.88	1.37	0.11	12.67	14.72
17-1146	8/2/2017	1.09	1.13	0.12	0.88	1.38	0.11	23.94	15.20
17-1317	9/5/2017	1.06	1.13	0.12	0.88	1.38	0.11	33.78	16.13
17-1516	10/2/2017	0.90	1.14	0.09	0.95	1.32	0.08	24.47	16.53
17-1787	11/27/2017	1.13	1.14	0.09	0.96	1.32	0.08	19.97	16.69
17-1846	12/4/2017	1.02	1,13	0.09	0.95	1.32	0.08	14.69	16.60
18-10	1/2/2018	1.21	1,14	0.09	0.95	1.33	0.08	10.81	16.36
18-271	2/19/2018	1.31	1.14	0.10	0.94	1.34	0.09	22.90	16.56
18-416	3/22/2018	1.08	1.14	0.10	0.94	1.34	0.09	17.59	16.88
18-553	4/17/2018	1.03	1.14	0.10	0.93	1.34	0.09	38.54	17.77
18-607	5/1/2018	1.01	1.13	0.10	0.92	1.34	0.09	24.65	18.25
18-816	6/12/2018	1.20	1.13	0.11	0.92	1.34	0.09	46.97	19.59
18-996	7/12/2018	1.09	1:13	0.10	0.92	1.34	0.09	11.41	19.70
18-1103	8/1/2018	1.15	1.13	0.10	0.92	1.34	0.09	17.23	19.67
18-1315	9/4/2018	0.96	1.12	0.11	0.91	1.33	0.10	22.12	20.09
18-1577	10/15/2018	0.95	1.11	0.11	0.89	1.33	0.10	24.32	20.64

National 75th Percentile and 90th Percentile CV Averages for Ceriodaphnia Reproduction IC25 (EPA 833-R-00-003): 0.45 - 0.62 PMSD Upper and Lower Bounds for Ceriodaphnia Reproduction (EPA-821-R-02-013): 13% - 47%

Work Order: 8J01003 Date: 11/2/2018 2:37:53PM

Results:

Sample: Effluent

8J01003-01 (Water)

General Chemistry

Alkalinity as CaCO3 70 10 mg/L 10/02/18 Ammonia 5.5 0.2 mg/L 10/02/18 pH 6.9 0.1 SU 10/01/18 18:00 Specific Conductance 998 2 uS/cm 10/02/18 Total Dissolved Solids 420 10 mg/L 10/03/18 Total Organic Carbon 6.8 0.2 mg/L 10/04/18 Total solids (TS) 528 10 mg/L 10/02/18 Total Suspended Solids 5 2 mg/L 10/02/18		Result	Reporting	Units	Date
Ammonia 5.5 0.2 mg/L 10/02/18 pH 6.9 0.1 SU 10/01/18 18:00 Specific Conductance 998 2 uS/cm 10/02/18 Total Dissolved Solids 420 10 mg/L 10/03/18 Total Organic Carbon 6.8 0.2 mg/L 10/04/18 Total solids (TS) 528 10 mg/L 10/02/18			Limit		Analyzed
pH 6.9 0.1 SU 10/01/18 18:00 Specific Conductance 998 2 uS/cm 10/02/18 Total Dissolved Solids 420 10 mg/L 10/03/18 Total Organic Carbon 6.8 0.2 mg/L 10/04/18 Total solids (TS) 528 10 mg/L 10/02/18	Alkalinity as CaCO3	70	10	mg/L	10/02/18
Specific Conductance 998 2 uS/cm 10/02/18 Total Dissolved Solids 420 10 mg/L 10/03/18 Total Organic Carbon 6.8 0.2 mg/L 10/04/18 Total solids (TS) 528 10 mg/L 10/02/18	Ammonia	5.5	0.2	mg/L	10/02/18
Total Dissolved Solids 420 10 mg/L 10/03/18 Total Organic Carbon 6.8 0.2 mg/L 10/04/18 Total solids (TS) 528 10 mg/L 10/02/18	pH	6.9	0.1	SU	10/01/18 18:00
Total Organic Carbon 6.8 0.2 mg/L 10/04/18 Total solids (TS) 528 10 mg/L 10/02/18	Specific Conductance	998	2	uS/cm	10/02/18
Total solids (TS) 528 10 mg/L 10/02/18	Total Dissolved Solids	420	10	mg/L	10/03/18
	Total Organic Carbon	6.8	0.2	mg/L	10/04/18
Total Suspended Solids 5 2 mg/L 10/02/18	Total solids (TS)	528	10	mg/L	10/02/18
	Total Suspended Solids	5	2	mg/L	10/02/18

Total Metals

	Result	Reporting	Units	Date
		Limit		Analyzed
Calcium	26.4	0.01	mg/L	10/03/18
Magnesium	4.49	0.01	mg/L	10/03/18
Cadmium	ND	0.0001	mg/L	10/02/18
Lead	0.0004	0.0002	mg/L	10/03/18
Aluminum	0.041	0.012	mg/L	10/03/18
Copper	ND	0.005	mg/L	10/03/18
Nickel	0.003	0.001	mg/L	10/03/18
Zinc	0.046	0.005	mg/L	10/03/18
Total Hardness	84.5	0.0312	mg/L	10/03/18

Sample: Merrimack River

8J01003-02 (Water)

General Chemistry

	Result	Reporting Limit	Units	Date Analyzed
Alkalinity as CaCO3	28	10	mg/L	10/02/18
Ammonia	0.1	0.1	mg/L	10/02/18
pH	6.7	0.1	SU	10/01/18 18:00
Specific Conductance	147	2	uS/cm	10/02/18
Total Dissolved Solids	36	10	mg/L	10/03/18
Total Organic Carbon	6.3	0.2	mg/L	10/04/18
Total solids (TS)	92	10	mg/L	10/02/18
Total Suspended Solids	ND	2	mg/L	10/02/18

Work Order: 8J01003 Date: 11/2/2018 2:37:53PM

Sample: Merrimack River (Continued)

8J01003-02 (Water)

Total Metals

	Result	Reporting	Units	Date
		Limit		Analyzed
Calcium	6.12	0.01	mg/L	10/03/18
Magnesium	1.17	0.01	mg/L	10/03/18
Cadmium	ND	0.0001	mg/L	10/02/18
Lead	0.0009	0.0002	mg/L	10/03/18
Aluminum	0.148	0.012	mg/L	10/03/18
Copper	ND	0.005	mg/L	10/03/18
Nickel	ND	0.001	mg/L	10/03/18
Zinc	ND	0.005	mg/L	10/03/18
Total Hardness	20.1	0.0312	mg/L	10/03/18

Sample Set # (NEW ENGLAND BIOASSAY CHAIN-OF-CUSTODY

EFFLUENT	RECEIVING WATER
Sampler: 51N BOLC MCGOWAN	Sampler: Tromas E. KAWA
Sampler: 51N BOLC MCGOWAN Title: CHEMIST	Title: Ops. Seperinte
Facility: Lowell Regional Wastewater Utilities	Facility: Lowell Regional Wastewater Utilities
Sampling Method: X Composite	Sampling Method: X Grab
Sample ID:	Sample ID: Merrimack River
Start Date: 09/33/23/8 Time: 2=32 AM	Date Collected:
Sample ID: Start Date: 0/3/2011 Time: 7=20 AM End Date: 10/01/298 Time: 7=20 AM	Time Collected:
Sampling Method: Grab (for pH and TRC only)	
Date Collected:	
Time Collected:	Received
	ON ICE
Sample Type: X Prechlorinated Dechlorinated	
Unchlorinated Chlorinated	
Chlorinated	
Effluent Sampling Location and Procedures: Plant outfall after de	chlorination. 24 hr. composite.
Receiving Water Sampling Location and Procedures: Merrimack	River upstream of the plant discharge at the Hunts Fall Bridge,
(Rt.38)	
Requested Analysis: X Chronic and modified acute	
Sample Sh	ipment
Method of Shipment: New England Testing Labs	
Relinquished By: A. Br. Date: /	0-1-18 Time: //= 88 AM
Received By: Date:	10-1 18 Time: 1/41
Relinquished By: Date:	0-1118 Time: 1240
Received By: Brueliuc Date:	(w-1) Time: 1540
Relinquished By: Date: _/	10-1-18 Time: 1540
Received By: Date:	1000
RC DEN	11-18 1630
FOR NEB US	SE ONLY 16 Zo
* Please return all ice packs NEB has provided to insure acc	curate temperature upon receipt to the NEB laboratory *
Temperature of Effluent Upon Receipt at Lab: 9.4 °C Te	mperature of Receiving Water Upon Receipt at Lab: <u>7- を。</u>
175 - 277 T	occiving Water COC# C38-3733

IF THIS COOLER IS MISPLACED OR THE LABEL IS LOST, PLEASE SHIP TO: KIM WILLS, NEW ENGLAND BIOASSAY, 77 BATSON DRIVE, MANCHESTER CT 06042 emple Set # 2

NEW ENGLAND BIOASSAY CHAIN-OF-CUSTODY

EFFLUENT	RECEIVING WATER
Sampler: 51N BOK MCGOWAN	Sampler: TEMS E. KANA
Title: CHEMIST	Title: OS. Superintendo Facility: Lowell Regional Wastewater Utilities
Facility: Lowell Regional Wastewater Utilities	Facility: Lowell Regional Wastewater Utilities
Sampling Method: X Composite	Sampling Method: X Grab
Sample ID:	Sample ID: Merrimack River
•	Date Collected: 12-22-20 10
Start Date/ $0 \rightarrow 0$ // Time: $7 = 0$ End Date/ $0 \rightarrow 0$ // Time: $7 = 0$	Time Collected: 7= 40 Am
Sampling Method: Grab (for pH and TRC only_)
Date Collected:	
Time Collected:	bout
	Received ON ICE
Sample Type: X Prechlorinated Dechlorinated	Old 12
Unchlorinated	
Chlorinated	
Receiving Water Sampling Location and Procedures: Mer (Rt.38)	rimack River upstream of the plant discharge at the Hunts Fall Bridge,
Requested Analysis: X Chronic and modified acute	
Sar	mple Shipment
Method of Shipment: New England Testing Labs	
Relinquished By:	Date: 10-3-18 Time: //:50/1-
	Date: 10-3 Time: 11:57
777	Date: 10-3 Time: /#U)
	Date: 10-3 Time: 1427
	Date: 10-3-18 Time: 1525
1 1 1 1	Date: 10-3-18 Time: 1540
FOR 1	NEB USE ONLY
* Please return all ice packs NEB has provided to ins	ure accurate temperature upon receipt to the NEB laboratory *
Temperature of Effluent Upon Receipt at Lab: <u>7.5 °C</u>	Temperature of Receiving Water Upon Receipt at Lab: 7.4 °C

IF THIS COOLER IS MISPLACED OR THE LABEL IS LOST, PLEASE SHIP TO: KIM WILLS, NEW ENGLAND BIOASSAY, 77 BATSON DRIVE, MANCHESTER CT 06042

Receiving Water COC#

Effluent COC# <u>C38-3754</u>

038-3755

NEW ENGLAND BIOASSAY CHAIN-OF-CUSTODY

EFFLUENT	RECEIVING WATER				
Sampler: $\sqrt{56eq}$ Title: $4557.$ $66eq$	Sampler: THOMAS E. KAWA				
Title: ASST. One im SI	Title: 2ps super in tene				
Facility: Lowell Regional Wastewater Utilities	Facility:				
Sampling Method: X Composite	Sampling Method: X Grab Sample ID: Merrimack River				
Sample ID:					
Start Date o 8 - 30 lf Time: 7-00 End Date o 6 - 50 lf Time: 7-00	Date Collected: $\frac{10-05-200}{0730}$				
End Date/ 6_05 Time:	Time Collected: 070				
Sampling Method: Grab (for pH and TRC only Date Collected:	_)				
Time Collected:					
Sample Type: X Prechlorinated Dechlorinated Unchlorinated Chlorinated					
Effluent Sampling Location and Procedures: Plant outfall afte	r dechlorination. 24 hr. composite.				
Receiving Water Sampling Location and Procedures: Merrima (Rt.38)	ck River upstream of the plant discharge at the Hunts Fall Bridge,				
Requested Analysis: X Chronic and modified acute	Received				
	ON ICE				
Sample	Shipment				
Method of Shipment: New England Testing Labs					
Relinquished By: 1.5/ua Date	: 10 -5-15 Time: 1.10 pm				
Received By: Black Date					
126 100					
Relinquished By: Date	1 - 5				
Received By:	4 6				
Relinquished By: Date	. 1, 1,0				
Received By: Date	: 10/0/18 Time: 0 +10				
FOR NEB USE ONLY					
	accurate temperature upon receipt to the NEB laboratory *				
•					
Temperature of Effluent Upon Receipt at Lab: 3-8 °C	Temperature of Receiving Water Upon Receipt at Lab. 3 °C				

IF THIS COOLER IS MISPLACED OR THE LABEL IS LOST, PLEASE SHIP TO: KIM WILLS, NEW ENGLAND BIOASSAY, 77 BATSON DRIVE, MANCHESTER CT 06042

Receiving Water COC#

Effluent COC#